Những câu hỏi liên quan
Dương Thị Ngọc Ánh
Xem chi tiết
Trần Thịnh Phát
24 tháng 4 2021 lúc 20:14

\(x+y+z=0\)

\(-x=y+z\)

\(x^2=\left(y+z\right)^2\) 

\(x^2=y^2+2yz+z^2\) 

\(y^2+z^2-x^2=-2yz\)

Tương tự:

\(z^2+x^2-y^2=-2zx\)

\(x^2+y^2-z^2=-2xy\)

➞ S = \(\dfrac{1}{-2xy}+\dfrac{1}{-2yz}+\dfrac{1}{-2zx}=\dfrac{x+y+z}{-2xyz}=0\) 

Vậy S = 0

Bình luận (0)
Dương Thị Ngọc Ánh
Xem chi tiết
zZz Cool Kid_new zZz
30 tháng 8 2019 lúc 19:55

Ta có:

\(x+y+z=0\)

\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)

\(\Rightarrow x^2+y^2+2xy=z^2\)

\(\Rightarrow x^2+y^2-z^2=-2xy\)

Tương tự ta được:
\(S=\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}=-\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=-\frac{1}{2}\cdot\frac{x+y+z}{xyz}=0\)

Vậy S=0

Bình luận (0)
nguyễn đình thành
Xem chi tiết
Fuiki Fuiko
Xem chi tiết
ST
2 tháng 12 2018 lúc 17:15

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=x+y+z\)

<=>\(\frac{x^2+x\left(y+z\right)}{y+z}+\frac{y^2+y\left(z+x\right)}{z+x}+\frac{z^2+z\left(x+y\right)}{x+y}=x+y+z\)

<=>\(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)

<=>\(S=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)

Bình luận (1)
đoàn minh Hải
2 tháng 12 2018 lúc 17:18

 x/(y+z)+y/(x+z)+z/(x+y)=1

=>\(\frac{x^2}{\left(y+z\right)^2}\)+\(\frac{y^2}{\left(x+z\right)^2}\)+\(\frac{z^2}{\left(x+y\right)^2}\)+2(\(\frac{xy}{\left(y+z\right)\cdot\left(x+z\right)}\)+\(\frac{yz}{\left(x+z\right)\left(x+y\right)}\)+\(\frac{zx}{\left(z+y\right)\cdot\left(x+y\right)}\))=1

Bình luận (0)
Dương Thị Ngọc Ánh
Xem chi tiết
Phan Nghĩa
27 tháng 6 2020 lúc 17:08

Áp dụng bđt svacxo :

\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\)

Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

Vậy \(Min_S=\frac{1}{2}\)khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Đăng
27 tháng 6 2020 lúc 17:12

Bài làm:

Áp dụng bất đẳng thức Svac-xơ ta có:

\(S=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1^2}{2.1}=\frac{1}{2}\)

Dấu "=" xảy ra khi: \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{y+x}\Rightarrow x=y=z=1\)

Vậy Min(S)=1 khi \(x=y=z=1\)

Học tốt!!!!

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Đăng
27 tháng 6 2020 lúc 17:13

À mk nhầm dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)nhé!

Bình luận (0)
 Khách vãng lai đã xóa
Nhật Ánh
Xem chi tiết
Hoàng Hà Tiên
Xem chi tiết
Trần Mạnh
23 tháng 9 2020 lúc 22:51

Bình luận (0)
 Khách vãng lai đã xóa
Dương Thị Ngọc Ánh
Xem chi tiết
Tran Le Khanh Linh
28 tháng 6 2020 lúc 9:32

Ta có \(-1\le x,y,z\le2\Leftrightarrow\left(x+1\right)\left(x-2\right)\le0\Leftrightarrow x^2-x-2\le0\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}y^2-y-2\le0\left(2\right)\\z^2-z-2\le0\left(3\right)\end{cases}}\)

Cộng từng vế (1)(2)(3) và do x+y+z=0 nên P\(\le6\left(4\right)\)

Từ hệ \(\hept{\begin{cases}\left(x+1\right)\left(x-2\right)=0\\\left(y+1\right)\left(y-2\right)=0\\\left(z+1\right)\left(z-2\right)=0\end{cases}}\)và x+y+z=2

=> trong 3 số x,y,z có một trong 2 số bằng 2 và hai số bằng -1

Vì thế chẳng hạn khi x=2; y=z=-1 (lúc đó x+y+z=0) ta có P=6

Vậy maxP=6

Bình luận (0)
 Khách vãng lai đã xóa
Dương Thị Ngọc Ánh
Xem chi tiết
Phan Nghĩa
27 tháng 6 2020 lúc 17:05

Áp dụng bđt cauchy schwarz dạng engel ta có :

\(VP=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\le\frac{\left(x+y+z\right)^2}{3}=3\)

Dấu = xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy \(Max_S=3\)khi \(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa
nguyen ha giang
Xem chi tiết
Akai Haruma
16 tháng 8 2019 lúc 23:21

Lời giải:

Xét hiệu:

\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}-\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)

\(\ge \frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+3\sqrt[3]{\frac{x^2}{y^2}.\frac{y^2}{z^2}.\frac{z^2}{x^2}}-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)

\(=\frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+3-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)

\(=\frac{1}{2}\left[(\frac{x}{y}-1)^2+(\frac{y}{z}-1)^2+(\frac{z}{x}-1)^2\right]\geq 0\)

\(\Rightarrow \frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z$

Bình luận (0)